
Django-HTTPolice Documentation
Release

Vasiliy Faronov

August 13, 2016

Contents

1 Example 3

2 Installation 5

3 Viewing the backlog 7

4 Raising on notices 9

5 Silencing unwanted notices 11

i

ii

Django-HTTPolice Documentation, Release

Django-HTTPolice is a package that integrates HTTPolice into Django 1.8+.

For recent changes in Django-HTTPolice, see the changelog.

Contents 1

http://httpolice.readthedocs.io/en/stable/
https://github.com/vfaronov/django-httpolice/blob/master/CHANGELOG.rst

Django-HTTPolice Documentation, Release

2 Contents

CHAPTER 1

Example

For a small example of Django-HTTPolice in action, see the example directory in the Git repo.

3

https://github.com/vfaronov/django-httpolice/tree/master/example

Django-HTTPolice Documentation, Release

4 Chapter 1. Example

CHAPTER 2

Installation

$ pip install Django-HTTPolice

This package provides django_httpolice.HTTPoliceMiddleware. Add it to your MIDDLEWARE or
MIDDLEWARE_CLASSES, as close to the top as possible:

MIDDLEWARE_CLASSES = [
'django_httpolice.HTTPoliceMiddleware',
'django.middleware.common.CommonMiddleware',
...

]

This middleware does nothing until you also set the HTTPOLICE_ENABLE setting to True.

When enabled, the middleware checks all exchanges passing through it. Then, there are two different ways to see the
results of these checks.

5

http://httpolice.readthedocs.io/en/stable/concepts.html#exchanges

Django-HTTPolice Documentation, Release

6 Chapter 2. Installation

CHAPTER 3

Viewing the backlog

All exchanges checked by the middleware are stored in a global variable called the backlog. By default, it holds up to
20 latest exchanges, but you can override by setting HTTPOLICE_BACKLOG to a different number.

The package also provides the django_httpolice.report_view() function. Add it to your URLconf like
this:

import django_httpolice

urlpatterns = [
...
url(r'^httpolice/$', django_httpolice.report_view),
...

]

When you start the server and open /httpolice/ (or whatever URL you chose), you will see an HTML report on
all the exchanges currently in the backlog. The latest exchanges are shown at the top of the report.

If HTTPOLICE_ENABLE is not True, the view responds with 404 (Not Found).

You can also access the backlog from your own code: it’s in the django_httpolice.backlog variable, as a
sequence of httpolice.Exchange objects. The latest exchange is backlog[0].

7

http://httpolice.readthedocs.io/en/stable/api.html#httpolice.Exchange

Django-HTTPolice Documentation, Release

8 Chapter 3. Viewing the backlog

CHAPTER 4

Raising on notices

If you set the HTTPOLICE_RAISE setting to ’error’, then the middleware will raise a
django_httpolice.ProtocolError whenever a response is found to have any notices of severity “er-
ror” (that are not silenced). If you set it to ’comment’, this will happen even for severity “comment”.

The exchange is still added to the backlog.

This can be used to fail tests on problems:

$ python manage.py test
...E
==
ERROR: test_query_plain (example_app.test.ExampleTestCase)
--
Traceback (most recent call last):

[...]
File "[...]/django_httpolice/middleware.py", line 92, in process_response
raise ProtocolError(exchange)

django_httpolice.common.ProtocolError: HTTPolice found problems in this response:
------------ request: GET /api/v1/words/?query=er
C 1070 No User-Agent header
------------ response: 200 OK
E 1038 Bad JSON body

--
Ran 4 tests in 0.380s

FAILED (errors=1)

9

Django-HTTPolice Documentation, Release

10 Chapter 4. Raising on notices

CHAPTER 5

Silencing unwanted notices

To silence notices you don’t care about, you can use the HTTPOLICE_SILENCE setting:

HTTPOLICE_SILENCE = [1070, 1110, 1194]

They will disappear from reports and will not cause ProtocolError.

By default, HTTPOLICE_SILENCE includes some notices that are irrelevant because of Django specifics, such as
1110.

Of course, the HTTPolice-Silence header works, too:

def test_unauthorized(self):
response = self.client.get('/api/v1/products/',

HTTP_HTTPOLICE_SILENCE='1194 resp')
self.assertEqual(response.status_code, 401)

11

http://httpolice.readthedocs.io/en/stable/concepts.html#silence
http://pythonhosted.org/HTTPolice/notices.html#1110

	Example
	Installation
	Viewing the backlog
	Raising on notices
	Silencing unwanted notices

